Reduction of In-Stent Restenosis Risk on Nickel-Free Stainless Steel by Regulating Cell Apoptosis and Cell Cycle

نویسندگان

  • Liming Li
  • Shuang Pan
  • Xiaohang Zhou
  • Xin Meng
  • Xiaoxi Han
  • Yibin Ren
  • Ke Yang
  • Yifu Guan
چکیده

High nitrogen nickel-free austenitic stainless steel (HNNF SS) is one of the biomaterials developed recently for circumventing the in-stent restenosis (ISR) in coronary stent applications. To understand the ISR-resistance mechanism, we have conducted a comparative study of cellular and molecular responses of human umbilical vein endothelial cells (HUVECs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel) which is the stent material used currently. CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profile of HUVECs exposed to HNNF SS and 316L SS, respectively. Flow cytometry analysis revealed that 316L SS could activate the cellular apoptosis more efficiently and initiate an earlier entry into the S-phase of cell cycle than HNNF SS. At the molecular level, qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were overexpressed on 316L SS. Further examination indicated that nickel released from 316L SS triggered the cell apoptosis via Fas-Caspase8-Caspase3 exogenous pathway. These molecular mechanisms of HUVECs present a good model for elucidating the observed cellular responses. The findings in this study furnish valuable information for understanding the mechanism of ISR-resistance on the cellular and molecular basis as well as for developing new biomedical materials for stent applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological behaviour of human umbilical artery smooth muscle cell grown on nickel-free and nickel-containing stainless steel for stent implantation

To evaluate the clinical potential of high nitrogen nickel-free austenitic stainless steel (HNNF SS), we have compared the cellular and molecular responses of human umbilical artery smooth muscle cells (HUASMCs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel). CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apopto...

متن کامل

Is there a link between nickel allergy and coronary stent restenosis?

Although many patients with coronary artery disease are being treated by coronary stents, in-stent restenosis is the major limitation of percutaneous coronary stenting procedures. Most stents are made of stainless steel, and that, allergic reactions to nickel ions released from coronary stainless-steel stents may be one of the triggering mechanisms for in-stent restenosis. We aimed to evaluate ...

متن کامل

In vitro study on the feasibility of magnetic stent hyperthermia for the treatment of cardiovascular restenosis

Thermal treatment or hyperthermia has received considerable attention in recent years due to its high efficiency, safety and relatively few side-effects. In this study, we investigated whether it was possible to utilize targeted thermal or instent thermal treatments for the treatment of restenosis following percutaneous transluminal coronary angioplasty (PTCA) through magnetic stent hyperthermi...

متن کامل

Quantitative biocompatibility evaluation of nickel-free high-nitrogen stainless steel in vitro/in vivo

Coronary stents must not provoke an inflammatory response; however, some kinds of ions that are released from biometals induce biological reaction. In the present study, we quantitatively evaluated biological reaction of nickel-free high-nitrogen stainless steel (HNS) by endothelial cell culture, and a bioimaging system using NF-κB/luciferase transgenic mice to confirm the potential of HNS for ...

متن کامل

Growth inhibition of cultured smooth muscle cells by corrosion products of 316 L stainless steel wire.

The potential cytotoxicity on vascular smooth muscle cells of corrosion products from 316 L stainless steel, one of most popular biomaterials of intravascular stents, has not been highlighted. In this investigation, 316 L stainless steel wires were corroded in Dulbecco's modified eagle's medium with applied constant electrochemical breakdown voltage, and the supernatant and precipitates of corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013